The exigencies of peak oil, global warming and unsustainable growth in energy consumption have sparked a quest for clean, abundant, renewable energy to replace fossil fuels. This course explores the chemistry of fossil fuels and potential solar-energy alternatives, ranging from biofuels to solar panels to hydrogen. Chemical principles such as reaction stoichiometry, molecular structure, thermochemistry, catalysis, energy quantization and electrochemistry will be learned in the context of investigating solar radiation, greenhouse gases, photovoltaics, artificial photosynthesis, fuel cells and the production and storage of hydrogen. No prerequisite. Offered every two years.

This course offers a description of the central nervous system's structure and function in terms of chemical interactions and reactions. Topics are developed through lectures, discussions and student presentations. Topics that may be covered include; the chemistry related to neurocellular anatomy, neurotransmitters, psychoactive drugs and neurological disorders. This counts toward the Neuroscience Program. No prerequisite. Offered every two years.

This course offers an introduction to the chemical basis of environmental issues and the environmental consequences of modern technology, with particular emphasis on air and water pollution. Topics include fossil fuels, nuclear power and solar energy, ozone depletion and the greenhouse effect, pollution and toxicology of heavy metals and pesticides, and environmental impact statements. These topics will be developed through lectures, discussions and class demonstrations. This course is required for the Environmental Studies Concentration. No prerequisite. Offered every two years.

This course provides a thorough introduction to the fundamental concepts, theories, and methodologies of chemistry. Topics may include stoichiometry, theories of molecular structure and bonding, the periodic table, acid-base chemistry, chemical equilibria and thermodynamics. This course provides a basis for the further study of chemistry. No prerequiste. Offered every fall semester.

This course covers a full year of chemistry in one semester and is designed for students with previous study of chemistry. We will explore and review key principles and methods from both CHEM 121 and 124. Prerequisite: AP score of 4 or 5 or placement exam. Corequisite: CHEM 123. Offered every fall semester.

This laboratory course accompanies CHEM 121 and 122 with an introduction to modern experimental chemistry. Laboratory experiments explore inorganic synthesis, molecular structure and properties, and spectroscopy, with an emphasis on laboratory safety, computerized data acquisition and analysis, and the theory of analytical instrumentation. The laboratory work is organized around individual and team projects. Communication skills are developed through proper use of a laboratory notebook. One three-hour laboratory is held per week. Corequisite: CHEM 121 or 122. Offered every fall semester.

This lecture-discussion course continues the introductory chemistry sequence started in CHEM 121. We will explore the chemical principles of molecular structure, bonding, reactivity, electrochemistry, kinetics and intermolecular forces. Prerequisite: CHEM 121 or 122. Offered every spring semester.

Biophysical and Medicinal Chemistry section

Chemical principles are explored in the context of biomolecules and molecular approaches to medicine.

Current Topics in Chemistry section

Chemistry principles are explored in the context of current issues in the study or application of chemistry. Topics include sustainability, molecular neuroscience, environmental chemistry, biomedical technology and renewable energy.

This lab is an experimental course to accompany CHEM 124 or 243. One three-hour laboratory session will be held per week. Juniors and seniors may enroll with permission of department chair. Prerequisite: CHEM 123. Offered every spring semester.

Biophysical and Medicinal Chemistry Lab sections

Laboratory experiments involve the application of chemical principles and techniques to systems of biological and medicinal importance. Possible experiments include synthesis of aspirin, enzyme kinetics and chromatographic analysis.

Nanoscience Lab section

Laboratory experiments involve the synthesis of functional materials, the analysis of their properties and the assembly of materials into working devices. Possible experiments include making solar cells, synthesis of nanocrystalline materials, quantum dots and an independent project.

Spectroscopic Analysis sections

Laboratory experiments involve quantitative analysis of materials using molecular spectroscopy, such as NMR, IR and UV/Vis spectroscopy. Possible experiments include identification of pharmaceutical or fragrance mixtures, polymer characterization, determination of equilibrium constants, and testing of food or drug products.

This lecture course offers a study of the chemical and physical properties of organic compounds. Theoretical principles are developed with particular emphasis on molecular structure and reaction mechanisms. The descriptive aspects of organic chemistry include strategies for synthesis and the study of compounds of biochemical interest. Prerequisite: grade of C+ or higher in CHEM 122 and completion of CHEM 123 or 126 or permission of department chair. Offered every spring semester.

This course is a continuation of CHEM 231. This lecture course offers a study of the chemical and physical properties of organic compounds. Theoretical principles are developed with particular emphasis on molecular structure and reaction mechanisms. The descriptive aspects of organic chemistry include strategies for synthesis and the study of compounds of biochemical interest. Prerequisite: CHEM 231. Offered every fall semester.

This laboratory course introduces fundamental methods in organic chemistry research and complements the topics covered in the lecture course, CHEM 231. This is achieved by carrying out experiments and research projects involving topics such as isolation of a natural product, oxidation and reduction reactions and reactions of alkenes. The techniques include liquid extraction, distillation, recrystallization and thin layer and gas chromatography. Compounds are identified and assessed for purity by melting point determination, refractometry, gas chromatography and infrared and nuclear magnetic resonance spectroscopy. Appropriate record keeping on laboratory notebooks and writing laboratory reports is emphasized. Corequisite: CHEM 231. Offered every spring semester.

This laboratory course will extend and apply the techniques developed in CHEM 233 to more advanced experiments in organic synthesis including open-ended experiments derived from current research projects. A particular emphasis will be placed on using chemistry databases, experimental design and planning, laboratory notebooks and record keeping, analytical and preparative chromatography, advanced NMR techniques (2-D) and writing laboratory reports. Upon successful completion of the two-course organic chemistry lab sequence (CHEM 233/234), students will have the skills needed to thrive in a synthetic organic chemistry research laboratory. Prerequisite: CHEM 233. Corequisite: CHEM 232. Offered every fall semester.

This course provides a foundation in the principles of structure, bonding, and reactivity in inorganic compounds and materials. We will emphasize the physical properties that make these materials useful in functional devices and biological systems. Possible applications may include semiconductor devices, solar-energy conversion, battery technology, photonic devices and sensors. Throughout our explorations, we will build models, both metaphorical and mathematical, that guide chemists in the design, use and analysis of materials. Prerequisite: CHEM 122, 124, or 231 or permission of instructor. Offered every fall semester.

This course is a study of the structure and function of biologically important compounds. Topics include proteins, enzymes, intermediary metabolism and electron transport with emphasis on thermodynamic and kinetic analysis of biochemical systems. Prerequisite: CHEM 232. Offered every spring semester.

This course presents a study of chemical kinetics and chemical thermodynamics. Specific topics include rate laws and reaction mechanisms, reaction-rate theories, the laws of thermodynamics, thermochemistry, properties of solutions, and equilibrium. Applications will be drawn from organic and inorganic chemistry, as well as biochemistry. MATH 112 is highly recommended. Prerequisite: CHEM 122 or 124. Offered every fall semester.

This course presents a study of quantum mechanics as applied to chemistry. Specific topics include general quantum theory; the time-independent Schrödinger equation applied to electronic, vibrational and rotational energy states; valence bond and molecular orbital theory; and molecular symmetry. MATH 112 is highly recommended. Prerequisite: CHEM 122, 124 or 126. Offered every two years for the spring semester.

Is your water safe? How do you know what compounds are in your water, food, body and local environment? How do you measure and quantify these compounds? How do you convince yourself that your measurements are valid or invalid? CHEM 341 explores the theory and practice of quantitative chemical analysis. Students will apply principles of measurement, instrument design, and data analysis to instrumental methods. Topics include spectroscopic, electrochemical and chromatographic methods. According to student interest, additional topics may include environmental analysis, biochemical assays, food quality and consumer safety. Prerequisite: CHEM 126 or 233. Offered every spring semester.

This advanced laboratory course focuses on using computational methods to understand chemistry and biochemistry. Part of the course will concentrate on using these methods to understand and visualize molecular structure, and part of the course will concentrate on using numerical methods to understand the kinetics and mechanisms associated with reaction systems. Computational work will involve both short experiments done individually and a larger research project that will be conducted in conjunction with classmates. This course meets for one three-hour laboratory period per week. Prerequisite or corequisite: CHEM 335 or permission of instructor. Offered every three years.

This course is an introduction to fundamental laboratory techniques in biochemistry. The focus of the course is the isolation, purification, characterization and detailed kinetic analysis of alkaline of an enzyme of interest. This course meets for one three-hour laboratory period per week. Prerequisite or corequisite: CHEM 256. Offered every spring semester.

In this laboratory course, students will engage in projects that integrate inorganic synthesis, analytical instrumentation, and physical measurement, focusing on coordination complexes. The course meets for one three-hour laboratory period per week. Prerequisite: CHEM 234 or permission of instructor. Offered every two years.

In this laboratory course, students will engage in multiweek, multistep projects that integrate both modern organic synthesis and advanced high-field nuclear magnetic resonance techniques. This course meets for one three-hour laboratory period per week. Prerequisite: CHEM 234. Offered every two years.

This advanced laboratory course focuses on spectroscopy instrumentation and data analysis. UV/Vis, fluorescence and laser spectroscopies are used to solve research questions involving kinetics, thermodynamics and molecular structure. Experiments are intended to complement course work in CHEM 341, 335 and 336, but these courses may be taken in any order. This course meets for one three-hour laboratory period per week. Prerequisite: CHEM 122 and 123 or 126. Offered every year.

Section 01 (.25 unit): Students engage in independent research under the direction of a faculty mentor. The time requirement is at least three hours in lab per week. Students will learn to search literature and give professional presentations. This course also provides an introduction to scientific writing. More details can be obtained from the department chair. Permission of instructor required. Offered every semester.

Section 02 (.5 unit): This section is a prerequisite to CHEM 497 and 498. The time commitment is six to eight hours per week in lab. Students will learn to search literature and give professional presentations as well as to write scientifically. More details can be obtained from the department chair. Permission of instructor required. Offered every semester.

Selected topics in advanced chemistry and biochemistry are explored with an emphasis on reading and discussing current scientific research and literature. Sections will include the following: Biophysical Chemistry, Advanced Organic Chemistry, Art and Chemistry, Chemical Biology, Hydrogen Energy Systems, Enzyme Mechanism, Emerging Techniques in Biological Chemistry and Advanced Biochemistry. Offered every semester, sections will change. Please see the schedule of courses each semester for the section being taught.

This is a required course for all chemistry majors, including those involved in independent research. The course covers topics relating to chemistry research. Weekly meetings will involve (1) searching chemistry literature, (2) analyzing primary research articles, and (3) discussing ethics, trends, funding and other issues relating to chemistry research. During the semester, students will give written and oral presentations of primary research articles. Prerequisite: senior standing. Offered every fall semester.

Individual study in chemistry is intended to supplement, not take the place of, coursework. For that reason, such study cannot be used to fulfill requirements for the major or minor. To enroll in an individual study, a student must identify a member of the chemistry department willing to direct the project and obtain the approval of the department chair. At a minimum, the department expects a student to meet regularly with his or her instructor for at least one hour per week. Because students must enroll for individual studies by the end of the seventh class day of each semester, they should begin discussion of the proposed individual study preferably the semester before, so that there is time to devise the proposal and seek departmental approval before the established deadline.

This course provides the student with an opportunity for independent investigation of a topic not covered in the curriculum or a topic related to a faculty member's research. Prerequisite: permission of department chair.

The emphasis is on independent research in collaboration with a faculty mentor, culminating with a thesis that is defended orally to an outside examiner. See department chair or website for full description. Permission of instructor and department chair required. Prerequisite: GPA of at least 3.2, enrollment in Section 02 of CHEM 375 or CHEM 376.

The emphasis is on independent research in collaboration with a faculty mentor, culminating with a thesis that is defended orally to an outside examiner. See department chair or website for full description. Permission of instructor and department chair required. Prerequisite: GPA of at least 3.2, enrollment in Section 02 of CHEM 375 or CHEM 376.