Wade Powell joined the Kenyon faculty in 2000 following a postdoctoral appointment at the Woods Hole Oceanographic Institution. His teaching responsibilities include molecular biology, environmental toxicology, gene manipulation lab and introductory biology courses.

A molecular biologist and environmental toxicologist, Powell directs an NIH-funded research program investigating the effects of dioxin-like pollutants on the gene expression, physiology and development of frogs and other amphibians.

Areas of Expertise

Molecular biology, environmental toxicology.


1997 — Doctor of Philosophy from Emory University

1991 — Master of Science from East Tennessee State University

1987 — Bachelor of Science from Davidson College

Courses Recently Taught

This is the first laboratory course a student takes and is a prerequisite for all upper-division laboratory courses- required for the major. Students are introduced to the processes of investigative biology and scientific writing. Laboratories cover topics presented in the core lecture courses, BIOL 115 and 116, and introduce a variety of techniques and topics, including field sampling, microscopy, PCR, gel electrophoresis, enzyme biochemistry, physiology, evolution and population biology. The course emphasizes the development of inquiry skills through active involvement in experimental design, data collection, statistical analysis, integration of results with information reported in the literature and writing in a format appropriate for publication. The year culminates in six-week student-designed investigations that reinforce the research skills developed during the year. Evaluation is based on short reports, quizzes, lab performance and scientific papers, as well as oral and written presentations based on the independent project. Prerequisite: BIOL 109Y and 115 or equivalent.

This course is required for the major, therefore, biology majors should take this class prior to the junior year. How is information generated, transmitted, stored and maintained in biological systems? The endeavor to understand the flow of biological information represents a fundamental undertaking of the life sciences. This course examines the mechanisms of heredity, the replication and expression of genetic information and the function of genes in the process of evolution, with an emphasis on the tools of genetics and molecular biology to address research questions in these areas. Prerequisite: BIOL 115 or equivalent. Offered every year.

The molecular and genomic basis of life is at the heart of modern biology. In this course, we learn techniques and explore research questions at the forefront of molecular research, focusing on the mechanisms by which the information of the genome is expressed to form the functional molecules of living cells and organisms. The processes of DNA replication, recombination and repair, transcription, and translation are discussed in the context of current research, frequently using primary literature. The function of genes and the regulation and measurement of gene expression are treated in depth. Students analyze and publish interactive tutorials on the structure and function of macromolecules. This course presumes a strong background in the basics of protein structure/function, central dogma processes, fundamental molecular techniques for manipulating nucleic acids and proteins, and general chemistry. This counts toward the upper-level cellular/molecular biology requirement for the major. Note: For further study of the function of proteins, membranes and cellular processes, the complementary course BIOL 266 ("Cell Biology") is recommended. Prerequisite: BIOL 116 and CHEM 122 and 123 or CHEM 124 and 126.

This skills lab course teaches fundamental methods of gene isolation, manipulation and characterization. An assortment of the following techniques is covered: the isolation of DNA and RNA from tissues and cells, recombinant DNA technique, expression of genes in heterologous systems, the polymerase chain reaction (PCR), measurement of gene expression, and bioinformatics and sequence analysis. This counts toward the upper-level laboratory requirement. Prerequisite: BIOL 109Y-110Y and either CHEM 122 and 123 or CHEM 124 and 126. Prerequisite or corequisite: BIOL 263.

Cancer, a collection of diseases characterized by uncontrolled cell division, is the second leading cause of death in the United States. Nearly 40% of Americans will receive a cancer diagnosis in their lifetime. In this advanced seminar, students investigate the molecular, genetic and cellular basis of cancer, including the role of mutagenesis in development of cancers as well as the fundamental cellular processes of signal transduction, cell proliferation and programmed cell death that are disrupted in cancerous cells. Students explore the mechanisms underlying diagnostic tools and therapies for patients and how knowledge of basic cancer biology can be leveraged to develop novel treatment methods. Cancer causes, prevention and epidemiology inform consideration of all topics. Student presentations and student-led discussion of primary literature form the foundation of course activities, while the capstone experience is the production of a substantial writing assignment that integrates course concepts to investigate a fundamental aspect of cancer biology and its clinical implications. All participants should have a strong background in biochemistry and molecular cell biology. This counts toward the cellular and molecular diversity requirement for the major and an upper-level biology elective for the BCHM and MBIO majors. Prerequisite: A 200- or 300-level biology course in the category of cellular and molecular biology.

This combined discussion and laboratory course aims to develop abilities for asking sound research questions, designing reasonable scientific approaches to answer such questions, and performing experiments to test both the design and the question. We consider how to assess difficulties and limitations in experimental strategies due to design, equipment, organism selected and so on. The course provides a detailed understanding of selected modern research equipment. Students select their own research problems in consultation with one or more biology faculty members. This course is designed both for those who plan to undertake honors research in their senior year and for those who are not pursuing honors but want practical research experience. A student can begin the course in either semester. If a year of credit is earned, it may be applied toward one laboratory requirement for the major in biology. This course is repeatable for credit. Prerequisite: BIOL 109Y–110Y and 116 and permission of instructor.

This course continues the honors research project and gives attention to scientific writing and the mechanics of producing a thesis. A thesis is required and is defended orally to an outside examiner. The letter grade is determined by the instructor and project advisor in consultation with the department. Permission of instructor and department chair required. Prerequisite: BIOL 385 and 497.