Priyadarshi Dey joined Kenyon College in 2023 after completing a Ph.D. from the University of Memphis and postdocs from Virginia Tech and the University of South Florida. His research interests span sperator theory and functional analysis, which uses techniques from linear algebra and topology. He is currently working on a class of projections on operator spaces. Dey loves teaching, and his favorite topics to teach are linear algebra and real analysis.

Outside the classroom, Dey likes music, running, cooking and hiking.

## Areas of Expertise

Operator theory

## Education

2021 — Doctor of Philosophy from U Memphis

## Courses Recently Taught

The second in a three-semester calculus sequence, this course has two primary foci. The first is integration, including Riemann sums, techniques of integration, and numerical methods and applications of integration. This study leads into the analysis of differential equations by separation of variables, Euler's method and slope fields. The second focus is the notion of convergence, as manifested in improper integrals, and sequences and series, particularly Taylor series. This counts toward the core course requirement for the major. Prerequisite: MATH 111 or AP score of 4 or 5 on Calculus AB exam or an AB sub-score of 4 or 5 on the Calculus BC exam. Offered every semester.

This course focuses on the study of vector spaces and linear functions between vector spaces. Ideas from linear algebra are useful in many areas of higher-level mathematics. Moreover, linear algebra has many applications to both the natural and social sciences, with examples arising in fields such as computer science, physics, chemistry, biology and economics. In this course, we use a computer software system, such as Maple or Matlab, to investigate important concepts and applications. Topics to be covered include methods for solving linear systems of equations, subspaces, matrices, eigenvalues and eigenvectors, linear transformations, orthogonality and diagonalization. Applications are included throughout the course. This counts toward the core course requirement for the major. Prerequisite: MATH 213. Generally offered three out of four semesters.

This course is a first introduction to real analysis. "Real" refers to the real numbers. Much of our work revolves around the real number system. We start by carefully considering the axioms that describe it. "Analysis" is the branch of mathematics that deals with limiting processes. Thus the concept of distance is also a major theme of the course. In the context of a general metric space (a space in which we can measure distances), we consider open and closed sets, limits of sequences, limits of functions, continuity, completeness, compactness and connectedness. Other topics may be included if time permits. Junior standing is recommended. This counts toward the continuous/analytic (column B) elective requirement for the major. Prerequisite: MATH 213 and 222. Offered every other fall.

This course follows MATH 341. Topics include a study differentiation and (Riemann) integration of functions of one variable, sequences and series of functions, power series and their properties, iteration and fixed points. Other topics may be included as time permits. For example: a discussion of Newton's method or other numerical techniques; differentiation and integration of functions of several variables; spaces of continuous functions; the implicit function theorem; and everywhere continuous, nowhere differentiable functions. This counts toward the continuous/analytic (column B) elective requirement for the major. Prerequisite: MATH 341. Offered every other spring.

This is a basic course in statistics. The topics covered are the nature of statistical reasoning, graphical and descriptive statistical methods, design of experiments, sampling methods, probability, probability distributions, sampling distributions, estimation and statistical inference. Confidence intervals and hypothesis tests for means and proportions are studied in the one- and two-sample settings. The course concludes with inference-regarding correlation, linear regression, chi-square tests for two-way tables and one-way ANOVA. Statistical software is used throughout the course, and students engage in a wide variety of hands-on projects. This counts toward the core course requirement for the major. Students with credit for STAT 116 cannot take STAT 106 for credit. No prerequisite. Offered every semester.