Tom Giblin has been a member of Kenyon’s faculty since 2009. An expert in theoretical and numerical high energy physics and cosmology, Giblin employs high-performance computing to study the physics of the early universe. Giblin prioritizes undergraduate involvement in his work and has received numerous public and private grants to fund his groups work on campus. Giblin also has a collaborative relationship with Professor of Studio Art Claudia Esslinger, and works to incorporate physics ideas as well as technology into new media art.

Giblin teaches courses across the physics curriculum and courses in scientific computing. Giblin is also an active member of the Astroparticle group at Case Western Reserve University in Cleveland.

Areas of Expertise

Cosmology, particle physics, computational physics

Education

2008 — Doctor of Philosophy from Yale University

2004 — Master of Science from Brown University

— Bachelor of Arts from Holy Cross College

Courses Recently Taught

Gravity is at once the most familiar and most mysterious of the basic forces of nature. It shapes the formation, structure and motion of stars, galaxies and the cosmos itself. Also, because gravity affects everything, it enables us to investigate parts of the universe that are otherwise invisible to us. This course will explore the role of gravity in a few vibrant areas of contemporary astrophysics: the search for planets beyond our solar system, the discovery of giant black holes in the nuclei of galaxies, the generation and detection of gravitational waves and the evidence for dark matter and dark energy in our universe. In addition to the scheduled class lectures and discussions, students will be required to meet a few times during the semester for evening laboratories. No prerequisite.

This seminar will explore a significant current topic in physics that will challenge first-year students. The topic varies from year to year. In the past, the seminar has explored such topics such nanoscience, astrophysics, particle physics, biological physics and gravitation. In addition to introducing the fundamental physics connected with these topics, the course will expose students to recent developments, as the topics are often closely related to the research area of faculty teaching the seminar. The seminar meets one evening a week for lectures, discussions, laboratory experiments and computer exercises. This course fulfills the concurrent laboratory requirement of PHYS 140 and serves as solid preparation for PHYS 146. Prerequisite: first-year students who are concurrently enrolled in or have placed out of PHYS 140. Offered every fall.

This laboratory course is a corequisite for all students enrolled in PHYS 135 or 145. The course meets one afternoon each week and is organized around weekly experiments demonstrating the phenomena of waves, optics, X-rays, and atomic and nuclear physics. Lectures cover the theory and instrumentation required to understand each experiment. Experimental techniques include the use of lasers, X-ray diffraction and fluorescence, optical spectroscopy, and nuclear counting and spectroscopy. Students are introduced to computer-assisted graphical and statistical analysis of data, as well as the analysis of experimental uncertainty. Prerequisite: PHYS 131 or 141 and concurrent enrollment in PHYS 145. Offered every spring.

This lecture course is the third semester of the calculus-based introductory sequence in physics, which begins with PHYS 140 and PHYS 145. Topics include electric charge, electric and magnetic fields, electrostatic potentials, electromagnetic induction, Maxwell's equations in integral form, electromagnetic waves, the postulates of the special theory of relativity, relativistic kinematics and dynamics, and the connections between special relativity and electromagnetism. This course may be an appropriate first course for particularly strong students with advanced placement in physics; such students must be interviewed by and obtain permission from the chair of the Physics Department. Prerequisite: PHYS 140 or equivalent and concurrent enrollment in PHYS 241 (upperclass students) or PHYS 141 (first-years) and MATH 213 or equivalent. Offered every fall.

This laboratory course is a corequisite for all upperclass students enrolled in PHYS 240. The course is organized around experiments demonstrating various phenomena associated with the special theory of relativity and electric and magnetic fields. Lectures cover the theory and instrumentation required to understand each experiment. Laboratory work emphasizes computerized acquisition and analysis of data, the use of a wide variety of modern instrumentation and the analysis of experimental uncertainty. Prerequisite: PHYS 140 and 141 or equivalent and concurrent enrollment in PHYS 240. Offered every fall.

The topics of oscillations and waves serve to unify many subfields of physics. This course begins with a discussion of damped and undamped, free and driven, and mechanical and electrical oscillations. Oscillations of coupled bodies and normal modes of oscillations are studied along with the techniques of Fourier analysis and synthesis. We then consider waves and wave equations in continuous and discontinuous media, both bounded and unbounded. The course may also treat properties of the special mathematical functions that are the solutions to wave equations in non-Cartesian coordinate systems. Prerequisite: PHYS 240. Offered every spring.

As modern computers become more capable, a new mode of investigation is emerging in all science disciplines using computers to model the natural world and solving model equations numerically rather than analytically. Thus, computational physics is assuming co-equal status with theoretical and experimental physics as a way to explore physical systems. This course will introduce students to the methods of computational physics, numerical integration, numerical solutions of differential equations, Monte Carlo techniques and others. Students will learn to implement these techniques in the computer language C, a widely used high-level programming language in computational physics. In addition, the course will expand students' capabilities in using a symbolic algebra program (Mathematica) to aid in theoretical analysis and in scientific visualization. Prerequisite: PHYS 240 and MATH 112 or permission of instructor. Offered every spring.

From particle accelerators to galaxies and stars to the big bang, high-energy particle physics and astrophysics address the sciences' most fundamental questions. This course will cover topics of contemporary relevance from the combined fields of cosmology, astrophysics, phenomenological particle physics, relativity and field theory. Topics may include the big bang, cosmic inflation, the standard model of particle physics, an introduction to general relativity, and the structure and evolution of stars and galaxies’ stellar structure and galactic evolution. Prerequisite: PHYS 350 or permission of instructor. Offered every other year.

This course presents an introduction to theoretical quantum mechanics. Topics include wave mechanics, the Schrödinger equation, angular momentum, the hydrogen atom and spin. Prerequisite: PHYS 245 and MATH 213. Offered every other year.

Section 01 (0.25 units): In this course students will conduct research, synthesize and share experiences, attend professional presentations in the department, and present their research with oral and written presentations. Students will complete a minimum of three hours of independent research under the supervision of a faculty member as well as participate in discussion sections and other commitments as designed by the instructor. This course does not count toward any major requirement. Permission of instructor required. Offered every semester.\n\nSection 02 (0.5 units): This section carries the same requirements as Section 01, except that the time commitment is six to eight hours of individual research under the supervision of a faculty member. This section represents a significant commitment to a research project. Enrollment in this section requires consultation with the department chair. This course does not count toward any major requirement. Permission of instructor required. Offered every semester.

Individual studies may involve various types of inquiry: reading, problem solving, experimentation, computation, etc. To enroll in individual study, a student must identify a physics faculty member willing to guide the course and work with that professor to develop a description. The description should include topics and content areas, learning goals, prior coursework qualifying the student to pursue the study, resources to be used (e.g., specific texts, instrumentation), a list of assignments and the weight of each in the final grade, and a detailed schedule of meetings and assignments. The student must submit this description to the Physics Department chair. In the case of a small-group individual study, a single description may be submitted and all students must follow that plan. The amount of work in an individual study should approximate the work typically required in other physics courses of similar types at similar levels, adjusted for the amount of credit to be awarded. An individual study course in physics is designed for .25 unit of credit. Individual study courses should supplement, not replace, courses regularly offered by the department. Because students must enroll for individual studies by the end of the seventh class day of each semester, they should begin discussion of the proposed individual study preferably the semester before, so that there is time to devise the proposal and seek departmental approval before the established deadline. Individual studies do not count towards the QR (quantitative reasoning) requirement. If a student wishes to satisfy the QR requirement through an individual study in physics, they must receive approval through the college petition process.

This course offers guided experimental or theoretical research for senior honors candidates. Students enrolled in this course will be automatically added to PHYS 498Y for the spring semester. Permission of instructor and department chair required.

This course offers guided experimental or theoretical research for senior honors candidates. Permission of instructor and department chair required.