Tom Giblin has been a member of Kenyon’s faculty since 2009. An expert in theoretical and numerical high energy physics and cosmology, Giblin employs high-performance computing to study the physics of the early universe. Giblin prioritizes undergraduate involvement in his work and has received numerous public and private grants to fund his groups work on campus. Giblin also has a collaborative relationship with Professor of Studio Art Claudia Esslinger, and works to incorporate physics ideas as well as technology into new media art.

Giblin teaches courses across the physics curriculum and courses in scientific computing. Giblin is also an active member of the Astroparticle group at Case Western Reserve University in Cleveland.

— Bachelor of Arts from Holy Cross College, magna cum laude

Courses Recently Taught

This course is the first course in a one-year introductory physics sequence. Topics include Newtonian mechanics, work and energy, fluids, and electric fields. When possible, examples will relate to life-science contexts. The course will be taught using a combination of lectures, in-class exercises, homework assignments and examinations. Knowledge of calculus is not required. This course does not count towards the Physics major. Prerequisite: sophomore standing and concurrent enrollment in PHYS 131. Offered every fall.

This course focuses on a wide variety of physics topics relevant to students in the life sciences. Topics include wave phenomena, geometrical and physical optics, elementary quantum theory, atomic physics, X-rays, radioactivity, nuclear physics and thermodynamics. When possible, examples will relate to life-science contexts. The course will be taught using a combination of lectures, in-class exercises, homework assignments and examinations. This course does not count toward the Physics major. Prerequisite: PHYS 130 and concurrent enrollment in PHYS 136. Offered every spring.

This lecture course is the first in a three-semester, calculus-based introduction to physics. Topics include the kinematics and dynamics of particles and solid objects; work and energy; linear and angular momentum; and gravitational, electrostatic and magnetic forces. PHYS 140, 145 and 240 are recommended for students who might major in physics and is also appropriate for students majoring in other sciences and mathematics, particularly those who are considering careers in engineering. The course will be taught using a combination of lectures, in-class exercises, homework assignments and examinations. This course is required for the Physics major. Prerequisite: concurrent enrollment in MATH 111, (if not previously taken) and PHYS 141 (first-year students) or PHYS 131 (sophomore students). Open only to first-year and sophomore students. Offered every fall.

This laboratory course is a corequisite for all students enrolled in PHYS 135 or 145. The course meets one afternoon each week and is organized around weekly experiments demonstrating the phenomena of waves, optics, X-rays, and atomic and nuclear physics. Lectures cover the theory and instrumentation required to understand each experiment. Experimental techniques include the use of lasers, X-ray diffraction and fluorescence, optical spectroscopy, and nuclear counting and spectroscopy. Students are introduced to computer-assisted graphical and statistical analysis of data, as well as the analysis of experimental uncertainty. This course is required for the Physics major. Prerequisite: PHYS 131 or 141 and concurrent enrollment in PHYS 145. Offered every spring.

This laboratory course is a corequisite for all upperclass students enrolled in PHYS 240. The course is organized around experiments demonstrating various phenomena associated with the special theory of relativity and electric and magnetic fields. Lectures cover the theory and instrumentation required to understand each experiment. Laboratory work emphasizes computerized acquisition and analysis of data, the use of a wide variety of modern instrumentation and the analysis of experimental uncertainty. This course is required for the Physics major. Prerequisite: PHYS 146 and concurrent enrollment in PHYS 240. Offered every fall.

The topics of oscillations and waves serve to unify many subfields of physics. This course begins with a discussion of damped and undamped, free and driven, and mechanical and electrical oscillations. Oscillations of coupled bodies and normal modes of oscillations are studied along with the techniques of Fourier analysis and synthesis. We then consider waves and wave equations in continuous and discontinuous media, both bounded and unbounded. The course may also treat properties of the special mathematical functions that are the solutions to wave equations in non-Cartesian coordinate systems. This course is required for the Physics major. Prerequisite: PHYS 145 and 240. Offered every spring.

As modern computers become more capable, a new mode of investigation is emerging in all science disciplines using computers to model the natural world and solving model equations numerically rather than analytically. Thus, computational physics is assuming co-equal status with theoretical and experimental physics as a way to explore physical systems. This course will introduce students to a variety of computational methods, which could include the methods of computational physics, numerical integration, numerical solutions of differential equations, Monte Carlo techniques and discrete Fourier transforms. Students will learn to implement these techniques in the computer language C, a widely used high-level programming language in computational physics, and for some techniques students may also learn implementations in the computer language Python, In addition, the course will expand students' capabilities in using a symbolic algebra program (Mathematica) to aid in theoretical analysis and in scientific visualization. This course is required for the Physics major. Prerequisite: PHYS 240 and MATH 112 or permission of instructor. Offered every spring.

From particle accelerators to galaxies and stars to the big bang, high-energy particle physics and astrophysics address the sciences' most fundamental questions. This course will cover topics of contemporary relevance from the combined fields of cosmology, astrophysics, phenomenological particle physics, relativity and field theory. Topics may include the big bang, cosmic inflation, the standard model of particle physics, an introduction to general relativity, and the structure and evolution of stars and galaxiesâ€™ stellar structure and galactic evolution. This counts toward the theoretical elective for the major. Prerequisite: PHYS 350 or permission of instructor. Offered every other year.

In this course we develop further the basic concepts of electricity and magnetism previously discussed in PHYS 240 and introduce mathematical techniques for analyzing and calculating static fields from source distributions. These techniques include vector calculus, Laplace's equation, the method of images, separation of variables and multipole expansions. We will revisit Maxwell's equations and consider the physics of time-dependent fields and the origin of electromagnetic radiation. Other topics include the electric and magnetic properties of matter. This course provides a solid introduction to electrodynamics and is a must for students who plan to study physics in graduate school. This counts toward the theoretical elective for the major. Prerequisite: PHYS 245 and MATH 213. Offered every other year.

This course presents an introduction to theoretical quantum mechanics. Topics include wave mechanics, the Schrödinger equation, angular momentum, the hydrogen atom and spin. This counts toward the theoretical elective for the major. Prerequisite: PHYS 245 and MATH 213. Offered every other year.

Section 01 (0.25 units): In this course students will conduct research, synthesize and share experiences, attend professional presentations in the department, and present their research with oral and written presentations. Students will complete a minimum of three hours of independent research under the supervision of a faculty member as well as participate in discussion sections and other commitments as designed by the instructor. This course does not count toward any major requirement. Permission of instructor required. Offered every semester.\n\nSection 02 (0.5 units): This section carries the same requirements as Section 01, except that the time commitment is six to eight hours of individual research under the supervision of a faculty member. This section represents a significant commitment to a research project. Enrollment in this section requires consultation with the department chair. This course does not count toward any major requirement. Permission of instructor required. Offered every semester.

This course offers guided experimental or theoretical research for senior honors candidates. Students enrolled in this course will be automatically added to PHYS 498Y for the spring semester. Permission of instructor and department chair required.

This course offers guided experimental or theoretical research for senior honors candidates. Permission of instructor and department chair required.