In completing the Senior Exercise, students should:

- Use primary literature as the foundation for understanding and developing ideas and arguments.
- Understand and think critically about experimental design and data.
- Identify important questions and design new experiments.
- Integrate material from several courses or subdisciplines.
- Consolidate and synthesize basic biological information.

The Senior Exercise has three required components that are described in more detail below:

- Attending 4 Departmental Seminars
- Taking an Educational Testing Service Subject Exam in early February; and
- The written portion of the senior exercise: paper summary and essay in three parts.

Attending Departmental Seminars

Each semester the Department sponsors five or six seminars. These seminars, usually by outside speakers, expose students to methods and thinking used in biology. Attending these seminars promotes all of the goals of the Senior Exercise.

You are required during the senior year to attend four of the seminars as part of the senior exercise. You should aim to complete this during the first semester of the senior year, but it must be completed no later than the end of February, 2016. Do not make the assumption that all seminars will be given as scheduled, as illness and bad weather can result in cancellations. Try to get to the seminars earlier in the year if possible, as the winter seminars sometimes result in cancellations. It is your responsibility to sign the attendance list for each seminar you attend and only seminars for which you have signed in can be counted towards the requirement. Students who have conflicts with meeting the required seminar attendance because of participation in intercollegiate athletics should contact the Chair of Biology.

ETS Subject Exam

The Educational Testing Service Subject Exam is typically held on a Saturday morning in early February. This exam is designed to test your cumulative knowledge in the field of Biology, and serves the Biology department as a useful assessment of both individual students and our overall programs. We ask that you DO NOT study for this exam, as we are interested in finding out what you know overall. However, you do need to take the exam seriously, as it is a graduation requirement. Scores will be sent to you after spring break.
The Essays

The written portion of your senior exercise will involve a three-part essay that critiques and builds on a published journal article. In the first part you will describe and evaluate the experimental design and data presented in the article. In the second part you will discuss how the results presented in the article relate to the other sub-disciplines of biology, as well as the overall significance of the work. In the third part you will describe future work that needs to be done to address important questions that arise from the article.

Advice:
- Effective language use will be critical to your success. The 1000-word limit for each part puts your prose on a tight budget. Organize each essay by preparing an effective outline; ideas and paragraphs should flow logically. Avoid wordiness, and use care with sentence structure. Don't obscure your meaning with multiple clauses and overly complicated constructions.

Choosing a Faculty Mentor

The first step will be to choose a faculty mentor who will advise you on the written portion of the senior exercise. You should select a faculty mentor whose field of expertise or interest is reasonably related to the area you expect to research.

Note: Generally, faculty can only accept three seniors, and these include all senior Honors students working in their labs.

You may choose your faculty mentor during the last two weeks of classes at the end of the spring semester of your Junior year before you leave for summer vacation (starting April 20, 2015). You must do it no later than September 4, 2015.

- Download the Senior Exercise Faculty Mentor Form, have it signed by your selected mentor, and return it to Wendy Busenburg in the Biology Department Office. Your arrangement with a mentor is not official (i.e., it doesn't exist) until Wendy receives the completed form and places your name on the master chart. Mentor forms will be available on line and in the office beginning April 20, 2015.
Assignment 1: Choosing a Journal Article

You will begin by choosing a recent research study that will lend itself to the type of analysis required in the essay. The article must have been published in a well-respected journal (see suggestions below) within the last five years, and cannot have been used in the context of a course. Be sure that you select a journal article that interests you - you will need to do additional background reading of primary and secondary sources in order to complete the essays. Try to select a paper that makes an important or controversial contribution to the field. It is hard to write an interesting analysis of a boring or insubstantial paper. When choosing an article, be sure that you will be able to use it to address each of the essay topics described in more detail below.

You will need to submit three possible journal articles for approval, in order to make certain that the article you choose is appropriate before you begin writing your essays. In consultation with your faculty mentor, one article will be selected from those submitted. You are encouraged to work with your faculty mentor prior to the deadline to identify appropriate journals or journals articles. For your guidance, a list of well-respected journals is provided below. Note that this list is not exhaustive, and that you are not limited to the journals suggested here.

Suggested Journals:

- Animal Behavior
- Am. J. Physiol.
- American Naturalist
- Behavioral Ecology
- Biophysical J.
- Cell (and other Cell journals)
- Development
- Developmental Biology
- Ecological Applications
- Ecology
- EMBO
- Evolution
- Genes and Development
- Genetics
- J. Bacteriology
- J. Biological Chemistry
- J. Cell Biology
- J. Comp. Physiol (A, B, or C)
- J. Exp. Biol
- J. Neurosci
- J. Virology
- Molecular and Cellular Biology
- Molecular Microbiology
- Nature
- Oecologica
- Plant Cell
- Plant Cell and Environment
- Plant Journal
- Plant Physiology
- Planta
- PLoS journals
- Proc. Royal Soc. B
- Science
- Toxicol. Sci.
- Virology

Assignment 2: Paper Summary and Annotated Bibliography

The purpose of writing a summary of the paper is to demonstrate your understanding of its content. The summary should function much as an abstract does by relating key information on the question, experimental design, and results presented in the paper. The summary should be no more than 500 words. It should be revised and handed in with the manuscript and final versions of your senior exercise.
The purpose of the annotated bibliography is to demonstrate your ability to identify additional sources related to your journal article that you are likely to use in writing your essay. This exercise represents a start on your literature search. In your subsequent essays, you will almost certainly cite additional papers, and some of those included in the annotated bibliography may not ultimately be included.

The annotated bibliography must include at least 15 references, mostly should be from the primary literature, i.e., peer-reviewed scientific journal articles. Up to 5 references can be review papers. Use the citation style from the *PLoS* journals, and follow the citation with a short (2 or 3 sentence) description about the paper. In your annotation be sure to address why this paper will be useful to you as you write your essays.

Example:

 This paper presents the cryo-EM structure of TFIIH. By combining these data with previous x-ray structures of individual subunits, a well-defined model of this general transcription factor was determined, contributing important information for the overall understanding of the architecture of the RNA pol II pre-initiation complex.

Assignment 3: An Essay in Three Parts

Part 1: Analysis (1000 words)

The purpose of the first essay is to demonstrate your ability to understand and think critically about both experimental design and data. Your overall objective is to evaluate the primary experiments and analyze the results.

Experimental Design. A well-done essay will reflect a thorough understanding of the overall objective and specific experimental aims of the paper. The essay should clearly define the model system and techniques employed, as well as the relative strengths and limitations of other approaches to the same question. Are the model system and experimental design(s) appropriate? Why or why not?

Data and Interpretation. Focus your data analysis on the two or three most important figures or tables. These should be prepared as a part of your document and attached to the back (N.B., figures/legends or tables/captions do not count against the 1000-word limit). We expect you to deal concretely with the data, for example by pointing out particular features of the figures or tables, and by making numerical comparisons.

Strong essays will identify and discuss both the strengths and limitations of the data in individual experiments. An understanding of the logical framework of the paper will also be evident. How do the results of each experiment lead to the overall conclusion? To what degree do the data support the authors’ claims? Are there particularly clever or innovative strategies for resolving uncertainties? Discuss alternative interpretations, experiment designs, or relevant controls that would refine or improve the conclusions of the paper.
Advice:
- Don't confuse an analysis with a summary (you've already written a summary!). Put yourself in the place of a reviewer evaluating a manuscript for publication. This approach requires not only careful thinking but also a certain level of overall expertise. To write an effective analysis, you will likely need to consult and cite other relevant papers. Reading beyond your primary paper will also contribute to your efforts on the remaining two parts of your essay.
- Focus on the limitations of the study, rather than its faults. The goal is not to criticize the article, but rather to evaluate its strengths and weaknesses.

Part 2: The biological context (1000 words)

The purpose of the second part is to demonstrate your ability to place your paper in the context of what you know about biological systems. In doing so you will focus on two primary questions: how does your paper relate to other sub-disciplines of biology that you have studied and what is the overall significance of the work? For the latter, consider how previous studies have influenced your paper as well as how your paper has influenced subsequent work in the field of biology.

In composing this essay, draw upon what you have learned in the biology courses that you have taken, and what you have learned from your reading of the literature relevant to your paper. Successful essays will use this understanding to demonstrate how your paper relates to the field of biology. In your analysis pay special attention to the different levels of biological organization. As a strategy you might think first about the implications of your study at one level of biological organization below and one level above the focus of your paper. What insights can you glean from the paper when thinking about larger or smaller levels of biological organization? In light of this, why are the results of this paper significant?

Advice:
- This part will require both critical thinking about what biology is, as well as a certain level of expertise in the field. Effective use of the literature is a key to success in this section. You'll need to read broadly on topics related to your paper. Although you may use secondary sources such as textbooks and review articles as a starting point for thinking about the biological context, your writing should focus on analysis of relevant primary literature. Be sure to reference the relevant texts or literature used in your synthesis.
- Your essay must span several levels of biological knowledge that are biologically relevant to the topic of your paper. For example, if the main focus of your journal article is population biology, you might aim to relate it to landscape ecology, organismal biology, and population genetics. If the main focus of your journal article is cellular biology, you might aim to relate it to organismal biology, molecular biology, evolution, and/or human disease. Your essay should make explicit links and connections with other areas of the field, including the approaches used to understanding biological systems.

Part 3: Future Work (1000 words)

The purpose of the third part is to demonstrate your ability to identify important questions and to design experiments. Your overall objective is to describe the future work that needs to be done to address the next important questions that arise from your article.

You should describe at least three distinct experiments or research questions in your 1000 word essay. You may describe experiments that extend or confirm the findings of your article. You
may also describe other approaches to explore the fundamental research questions in your article. Finally, you may propose new research questions and describe how they might be investigated.

You must describe your proposed future work in detail. Present a research question or specific aim along with a hypothesis. Describe the experimental system and the specific techniques and methods that will be used to test the hypothesis. Where appropriate, describe the control groups and the data analysis that will be employed. State what results would support or contradict the hypothesis. Indicate potential problems that might arise during the experiments and suggest alternate strategies where possible.

Advice:

- You may not describe experiments that have already been published as your future work, and it is your responsibility to know the literature well enough to avoid previously published experiments. Reference relevant literature to support your proposed research questions and experiments.
- Be sure to clearly delineate each sub-section of this essay. Many students find subheadings to be useful.
Due Dates and Mechanics

All work will be submitted electronically on Moodle. Original written work is screened by turnitin.com.

Due dates and times will be strictly enforced. See specific submission instructions below for each deadline.

Sept. 4 [Friday, 4:00 PM] Final date for commitment to mentor. Faculty mentor form submitted to Ms. Busenburg in the Biology office.

Sept. 13 [Sunday, 11:59 PM] Three journal articles for consideration by your faculty mentor submitted as PDF documents to Moodle.

Sept. 20 [Sunday, 11:59 PM] Paper Summary and Annotated bibliography submitted in electronic form to Moodle. Note that mentors may also require paper copies at their discretion.

Oct. 18 [Sunday, 11:59 PM] Complete manuscript version of essays and paper summary in electronic form as a single document to Turnitin.com. Also submit your focal journal article as a PDF document via Moodle. Note that mentors may also require paper copies at their discretion.

Nov. 15 [Sunday, 11:59 PM] Revised manuscript including the three essays, paper summary, references cited, and title page in electronic form as a single document to Moodle. All sections of your manuscript, including the paper summary, should be revised. Also submit the focal research article that you analyzed and the most pertinent primary literature cited (5-10 primary sources) as PDF documents via Moodle. Note that mentors may also require paper copies at their discretion.

Due dates are non-negotiable. If any deadline is not met, the Dean for Academic Advising will be notified, and you may be required to re-do the written portion of the senior exercise with a new journal article. Comments by your faculty mentor will generally be returned within one week following each deadline.

- Failure to meet a deadline automatically results in loss of eligibility for distinction.
- Time stamps on moodle define on-time submission.
- Without successful and timely completion of the senior exercise you cannot graduate.

All drafts submitted must show professional English style and usage throughout, including page numbers and proper reference format. If deficiencies appear, you will be required to work with a scientifically literate tutor at the Writing Center or your faculty mentor before submitting the revised manuscript. Revised manuscripts that still show serious deficiencies in style will not satisfy the senior exercise.

Academic Honesty and Plagiarism. You must write in your own words. Relying on close paraphrasing of other’s work does not constitute “in your own words”. Ask your mentor about paraphrasing if in question, particularly regarding methods, introductory comments from research papers, and discussion comments. **DO NOT** use direct quotations in your essays. You
should describe the work of others in your own words and cite the work properly in text and in listed references. Turnitin.com automatically checks for plagiarism. Results of this check are available to you prior to each deadline. Collegiate standards for academic honesty will be followed to the letter. Please see the course catalog for details.

Citations and References. Appropriate credit must be given to the author(s) of any reference material you use in your paper. If an idea is not your own, you must correctly attribute credit, even when the wording is your own. Citations are given in numbered form in the body of the text in parentheses (see formatting guidelines, below).

REFERENCES CITED

A successful senior exercise will cite at least 12 primary journal articles overall and include cited works in each of the three essays. Overreliance on review papers is explicitly discouraged.

This final section of your manuscript is an ordered list of the references cited in your paper. Include all those specific references cited in the text. Do not include references that are not cited. A single References Cited section should be provided that covers the references for all three essays and your summary.

Citation information should be given as directed in the author instructions for the PLoS journals. The following examples come from the PLoS web site:

- **Published papers.** Hou WR, Hou YL, Wu GF, Song Y, Su XL, et al. (2011) cDNA, genomic sequence cloning and overexpression of ribosomal protein gene L9 (rpL9) of the giant panda (*Ailuropoda melanoleuca*). Genet Mol Res 10: 1576-1588. Note: Use of a DOI number for the full-text article is acceptable as an alternative to or in addition to traditional volume and page numbers.
- **Accepted, unpublished papers.** Same as above, but “In press” appears instead of the page numbers.
Organization of the Complete Manuscript

All work must be double-spaced in 12-pt font with one-inch margins. Include numbers on every page.

Submit your complete manuscript and revised complete manuscript with the following sections:

- Title page. The title page must include your name and your mentor’s name, the full citation of your focal paper, and the word count for each of the three essays.
- Paper summary.
- Essays 1, 2, and 3.
- References Cited. A single references section services all previous portions of the manuscript.
- Figures. Any figures you include should be grouped with in the back of your manuscript, not embedded in the text. Be sure a legend is included below each figure.

Evaluation Process. The Department will assign a second reader. Each Senior Exercise will be read by at least two faculty members and the department as a whole will approve the final evaluation.

You will be notified by the Department Chair by e-mail and/or letter of the decision of the Department regarding satisfactory completion of the essays. Decisions will be made by the end of the first semester. Should you not pass the written portion of the senior exercise, you can attempt the exercise again in the second semester, according to a schedule arranged by your mentor and the department chair. Should you not satisfactorily complete any component of the senior exercise in biology you cannot graduate in May.

Distinction. Senior Exercises receiving Distinction are usually marked by originality and outstanding scientific writing, analysis, organization and flow of discussion, and use of primary literature. The results of your ETS exam are a prerequisite to earning distinction on your senior exercise. Distinction is rewarded when your work is judged to be of “A” quality on all the essays and the ETS exam is completed satisfactorily.

The following is a list of criteria that the Biology department uses when assessing senior exercise essays. Students should refer to the full senior exercise guidelines for detailed instructions for each essay. We share this with students as a supplementary indication of our expectations. We caution against use of this list as a simple checklist. Simply addressing each criterion does not necessarily guarantee a satisfactory senior exercise.

1. Analysis (particularly essay 1):
 - Evaluates the study’s model system, experimental design, and techniques.
 - Describes study’s results and how well they support its conclusions.
 - Explores both strengths and weaknesses of the article
 - Directly discusses actual data and figures from the article.
 - Proposes alternate approaches, experiments, analyses or controls that could improve the study.
 - Compares and contrasts methods and results to those of similar research articles.
2. Synthetic ability (particularly essay 2):
 - The article is placed in an appropriately broad, integrative biological context. The essay extends beyond the material covered in the introductory lecture course that the paper would fall into.
 - The essay articulates why someone in another field would benefit from reading the article. It shows how the paper has influenced other fields or how it has been influenced by other fields.
 - Primary literature is used as a foundation for integrating disciplines.
 - The overall significance of the article is clearly described.

3. Creative thinking (particularly essay 3):
 - Important further research questions are identified.
 - Appropriate experimental designs are proposed.
 - Hypotheses are clearly stated, and results that would contradict or support hypotheses are proposed.
 - Proposed experiments use methodologies and approaches different from the paper's.
 - Possible experimental or interpretive difficulties are mentioned.
 - Proposed experiments demonstrate an understanding of the relevant primary literature.

4. Written skill (all 3 essays):
 - Each essay is well organized.
 - The writing is succinct, clear, and direct.
 - Grammatical and spelling errors are absent.
 - Proper citation format is used.

5. Comprehension of material content (all 3 essays):
 - Concepts are explained accurately.
 - A deep understanding of the paper’s research area is demonstrated.
 - Primary literature is effectively used to support arguments. At least 10-15 primary research articles are incorporated into the essays.
The Biology Seminar Series: Information for Students

Why do we require seniors and research students to attend seminars?
- The seminar series is an important part of our departmental emphasis on the process of science. Just as you have learned about the process of science by reading research papers in classes, you will also learn about how science works by attending seminars.
- Seminars are a common means for communicating scientific information, and being comfortable with this format is an important skill for biologists.
- The seminar series is also an important opportunity for both students and faculty to interact with scientists from other institutions. We often invite students to have lunch or dinner with seminar speakers – if you’d like to be invited, let us know.

What sort of information is presented in a seminar?
- In a typical research seminar, the speaker will present findings and ideas that are not yet published. Thus, the content in a research seminar may be less polished or less finished than the final product that is printed in a peer-reviewed journal.

What are the benefits to the speaker and the audience?
- Speakers benefit by presenting their work at an early stage. They receive important feedback from the audience, usually in the form of questions during or after the seminar.
- The audience benefits by hearing about results before they reach print form. Students can benefit by seeing an actual example of how scientists interact with each other in the real world.

How can I enjoy and benefit from my seminar attendance?
- Prepare beforehand. If you have the chance, read a paper written by the seminar speaker or read a review article on the topic. Having an understanding of the topic before the seminar will greatly enhance your enjoyment and understanding.
- Take notes. Generally, research seminars move fast and speakers often lapse into the jargon of their discipline. It is possible to get swamped by a tsunami of vocabulary. The beginning of a research seminar usually contains background on the research area, similar to the Introduction section of a paper. It helps to jot down unfamiliar names and acronyms. Later in the talk you might forget that eNAC stands for epithelial sodium channel, that TEWL is total evaporative water loss, or that a pika is a short-eared mammal that lives at high altitudes. Having your notes to remind you, you’ll be able to keep up with the talk.
- Think critically. When reading a research paper, scientists try to critically evaluate the evidence that is presented. Try to do the same during a seminar. Look carefully at the data. Do they support the stated conclusions? Even if you miss some of the details, you can always assess the quality of the data that are presented.
- Understand what you can. You may not understand every aspect of a research seminar, especially if it is outside of your major area of biology. Don't worry about it. Probably only a few experts in the field understand the work entirely. And even the speaker may not exactly know how everything fits together. Remember that speakers often present research in progress and there are almost certainly aspects that are still not understood.
- Observe how effectively the speaker presents the seminar. You can learn a lot by watching how scientists present their work. Are the slides clear? Did the speaker give enough background information? Are the data presented effectively? Even if you don't understand a word of the science, you can learn how to effectively present your work. You might also note some mistakes and vow never to make them yourself.
- Ask questions: You are encouraged to ask questions at seminars. Our students often do, and speakers are appreciative and impressed.