Chris Gillen studies the molecular physiology of ion transport proteins in insect models systems including fruit flies and mosquitoes. His work has been supported by the National Science Foundation and the National Institutes of Health. Gillen is director of Kenyon’s creative Science Writing program. He has co-directed and taught writing workshops including the Kenyon Review Young Science Writers and the Kenyon College – Indian Institute of Technology Madras Scientific Writing Workshop.

Gillen is a winner of Kenyon's Trustee Teaching Excellence Award and the Society of Integrative and Comparative Biology’s M. Patricia Morse Award for Excellence and Innovation in Science Education.

Areas of Expertise

Animal physiology, science writing, insect salt and water balance

Education

1994 — Doctor of Philosophy from Yale University

1989 — Bachelor of Arts from Lafayette College

Courses Recently Taught

This is the first laboratory course a student takes and is a prerequisite for all upper-division laboratory courses- required for the major. Students are introduced to the processes of investigative biology and scientific writing. Laboratories cover topics presented in the core lecture courses, BIOL 115 and 116, and introduce a variety of techniques and topics, including field sampling, microscopy, PCR, gel electrophoresis, enzyme biochemistry, physiology, evolution and population biology. The course emphasizes the development of inquiry skills through active involvement in experimental design, data collection and management, statistical analysis, integration of results with information reported in the literature, and writing in a format appropriate for publication. The year culminates in six-week student-designed investigations that reinforce the research skills developed during the year. Evaluation is based on laboratory notebooks, lab performance and scientific papers, as well as oral and written presentations summarizing the independent project. Prerequisite: completion or concurrent enrollment in BIOL 115 or equivalent.

This is the first laboratory course a student takes and is a prerequisite for all upper-division laboratory courses- required for the major. Students are introduced to the processes of investigative biology and scientific writing. Laboratories cover topics presented in the core lecture courses, BIOL 115 and 116, and introduce a variety of techniques and topics, including field sampling, microscopy, PCR, gel electrophoresis, enzyme biochemistry, physiology, evolution and population biology. The course emphasizes the development of inquiry skills through active involvement in experimental design, data collection, statistical analysis, integration of results with information reported in the literature and writing in a format appropriate for publication. The year culminates in six-week student-designed investigations that reinforce the research skills developed during the year. Evaluation is based on short reports, quizzes, lab performance and scientific papers, as well as oral and written presentations based on the independent project. Prerequisite: BIOL 109Y and 115 or equivalent.

This course is required for the major (AP or IB credit can be applied), therefore, biology majors should take this class prior to the junior year. Energy flow is a unifying principle across a range of living systems, from cells to ecosystems. With energy flow as a major theme, this course covers macromolecules, cells, respiration and photosynthesis, physiology and homeostasis, population and community interactions, and ecosystems. Throughout the course, the diversity of life is explored. The course also introduces students to the process of scientific thinking through discussion of research methodology and approaches. No prerequisite. Offered every year.

Animal physiology examines the processes of animal cells, tissues and organ systems. In this course, we seek to understand how physiological processes relate to the survival of an animal in its environment. We use three primary approaches: (1) comparative, contrasting animals that live in different environments; (2) environmental, exploring how animals survive in challenging environments; and (3) structure-function, examining how the anatomy of a system relates to its function. Each organ system (nerve, muscle, cardiovascular, respiratory, gastrointestinal, renal and excretory) is covered in detail. Readings from the primary research literature are assigned. Students complete a project in which they write a physiology research paper for both scientific and general audiences. This counts toward the upper-level organismal biology/physiology requirement for the major. Prerequisite: BIOL 115 or equivalent.

This laboratory course explores the techniques, equipment and experimental designs common to animal physiology. Topics may include muscle physiology, cardiac physiology, salt and water balance, metabolism, and exercise physiology. A variety of experimental techniques are used. Students participate in experimental design, perform experiments and present results in oral and written form. They also read and analyze relevant papers from the primary literature. This counts toward the upper-level laboratory requirement. Prerequisite: BIOL 109Y-110Y. Prerequisite or corequisite: BIOL 243.

This course provides the student with the opportunity to pursue an independent investigation of a topic of special interest not covered, or not covered in depth, in the current curriculum. The investigation, designed in consultation with the chosen faculty mentor, may be designed to earn 0.25 or 0.5 unit of credit in a semester. BIOL 393 is ordinarily a library-oriented investigation. (For laboratory-oriented independent research, see BIOL 385.) Normally, students receive credit for no more than two semesters of individual study. Individual study does not fulfill the natural science diversification requirement, nor does it count toward the requirements for the major. Because students must enroll for individual studies by the end of the seventh day of classes, they should begin discussion of the proposed individual study well in advance, preferably the semester before, so that there is time to devise a syllabus and seek departmental approval.

In this capstone seminar, students explore current research topics in biology by writing a mini-review on a topic of their choice. In doing so, students analyze and integrate information from research articles that connect specific studies to broader biological questions and propose future work that refines and extends prior studies. Students communicate their insights in both oral and written formats. Assignments include short essays, student presentations, a general-audience piece and peer review. This course counts toward the upper-level lecture course requirement for the biology major. Senior standing and biology or molecular biology major.

This course offers an in-depth research experience. Prior to enrollment in this course, students are expected to complete at least one semester of BIOL 385 and participate in the Summer Science Scholars program. Two semesters of BIOL 385 are recommended. Emphasis is on completion of the research project. Students also are instructed in poster production and produce one or more posters of their honors work for presentation at Kenyon and possibly at outside meetings. There are oral progress reports, and students draft the introduction and methods section of the honors thesis. The letter grade is determined by the instructor and project advisor in consultation with the department. Students must have an overall GPA of at least 3.33 and a GPA of 3.33 in biology. Permission of instructor and department chair required. Prerequisite: BIOL 385 and permission of project advisor and department chair.

This course continues the honors research project and gives attention to scientific writing and the mechanics of producing a thesis. A thesis is required and is defended orally to an outside examiner. The letter grade is determined by the instructor and project advisor in consultation with the department. Permission of instructor and department chair required. Prerequisite: BIOL 385 and 497.